

BIG DATA ON FUNGIBLE
COMPOSABLE
INFRASTRUCTURE
WHITEPAPER

TABLE OF CONTENTS
1 Executive Summary ..3

2 Introduction to Big Data and Hadoop ...3

2.1 Hadoop ... 4

2.2 Hadoop Subsystems .. 4

2.2.1 Hadoop Distributed File System (HDFS) .. 4

2.2.2 Yet Another Resource Negotiator (YARN) .. 4

2.2.3 MapReduce .. 5

3 Cloudera Data Platform ..5

4 Challenges with Hadoop Architecture ...6

5 Composable Infrastructure ...7

6 Fungible, Inc. ...7

6.1 Fungible DPUⓇ ... 7

6.2 Fungible Architecture .. 9

7 Addressing the Big Data Challenges .. 10

8 Benchmarks .. 11

8.1 Test Bed Configuration ... 11

8.2 Cloudera Components Distribution ... 11

8.3 Hadoop Benchmark ... 11

8.3.1 How to run TeraGen, TeraSort and TeraValidate .. 12

8.3.2 Results .. 13

9 Final Thoughts ... 14

10 Authors .. 15

11 About Translab... 15

1 EXECUTIVE SUMMARY

Unlike most IT applications, Big Data applications are tightly coupled with business

transformations and goals. Hence, performance becomes a key parameter as businesses

need to extract real-time insights from Hadoop clusters.

Traditional clusters built on commodity x86 hardware face severe performance

bottlenecks as general-purpose CPUs are tasked with running data-centric jobs. This not

only hampers the Big Data jobs by deallocating CPU cores, but is also inefficient in

handling those data-centric jobs.

With the Fungible Data Processing UnitⓇ (DPU) powering both the Fungible TrueFabricⓇ

and Fungible ComposerⓇ, business teams and IT teams are freed from such limitations

and inefficiencies of traditional clusters. The Fungible Data CenterⓇ (FDC) is a

preconfigured rack-scale appliance that offers performance at or near theoretical limits.

Hadoop operators can create clusters on the fly taking advantage of the composable

nature of the FDC; eliminating overprovisioning and providing the elasticity needed for

lean, agile organisations of today.

Through our intensive benchmarking, we found that the Fungible Data Center solution is

a no-compromise platform for Big Data and Hadoop, offering almost no performance

reduction with increasing resiliency from RF2 to RF3.

2 INTRODUCTION TO BIG DATA AND HADOOP

Though the term “Big Data” dates way back to the 1960s, the concept did not become

mainstream until the rise of the World Wide Web and emergence of platforms like Yahoo!,

Google, and Facebook, in the 1990s and 2000s. These platforms enabled the growth of

unstructured data on a petabyte scale. Managing and monetizing these large datasets

became the greatest tech challenge of all.

The solution to this challenge came in the form of two Google research papers: Google

distributed File System (GFS), which described a distributed architecture for storing large

datasets, and MapReduce, which described a parallel processing model to handle large

datasets.

These two research papers were realised as the Apache Hadoop Project. Today, Hadoop

forms the foundation of Big Data architecture.

2.1 Hadoop

Apache Hadoop Project designed a novel distributed architecture based on commodity

x86 architecture instead of traditional “Big Iron”. The architecture was designed to be

fault-tolerant rather than fault-resistant. The principle was to recover from any fault as

quickly as possible by creating multiple copies of each file. The number of replicas of

data is determined based on resiliency required (Tuneable Replication).

Another unique aspect of the architecture was to Move the Compute closer to the Data.

Due to limitations of networking, the trade-off was made to minimize network congestion

by minimizing the bandwidth needed for data replication. To reduce network congestion,

the compute and the storage were combined into a single unit. However, this

necessitated compute handle the storage workloads, which were traditionally offloaded

to dedicated controllers.

2.2 Hadoop Subsystems

Hadoop consists of 3 core subsystems:

● HDFS (Hadoop Distributed File System)

● YARN (Yet Another Resource Negotiator)

● MapReduce

2.2.1 HADOOP DISTRIBUTED FILE SYSTEM (HDFS)

HDFS is the storage subsystem of Hadoop. To make the overall system fault-tolerant,

three separate copies of data are stored across multiple nodes and server racks. This

ensures that in case of a node or even an entire rack failure, no data is lost. HDFS splits

large datasets into smaller chunks called blocks. These blocks are then distributed across

the entire HDFS cluster.

HDFS has a typical master-slave architecture, with one master node (called NameNode)

managing multiple slave nodes (called DataNodes) within the Hadoop cluster. NameNode,

the most vital component of a Hadoop cluster, stores the metadata (i.e, file names, their

permissions, IDs, locations, as well as the number of replicas). Loss of NameNode will

lead to loss of data across the Hadoop cluster. Additional NameNode is available in

active-passive (Secondary NameNode) or active-active (Standby NameNode) mode to

ensure there are no single points of failure.

2.2.2 YET ANOTHER RESOURCE NEGOTIATOR (YARN)

YARN manages all the resources in a Hadoop cluster. It, in turn, has four components:

Resource Manager, Node Manager, Application Master and Container.

Resource Manager, which runs on the NameNode, accepts job submissions, and allocates

resources to those jobs.

What the Resource Manager is to NameNode, Node Manager is to DataNode. Each

DataNode runs a separate instance of Node Manager. After initiation, Node Manager

registers itself with the Resource Manager and manages the application containers

assigned to it by the Resource Manager.

When a job is submitted to the Resource Manager, it assigns the job to an Application

Master, based on available resources. The Container is a logical representation of physical

resources on a single DataNode.

2.2.3 MAPREDUCE

MapReduce processes large datasets stored on HDFS. MapReduce runs on the same

DataNode where the data is stored (moving the compute closer to storage as mentioned

earlier). The MapReduce algorithm then maps, shifts, sorts, and reduces the data to

provide the desired results. This output is stored in HDFS.

3 CLOUDERA DATA PLATFORM

In 2008, Christophe Bisciglia, Amr Awadallah and Jeff Hammerbacher, pioneers and

proselytisers in the field of Big Data, founded Cloudera. At Cloudera, they developed

Cloudera’s Distribution including Apache Hadoop (CDH). CDH was not a single tool, but

a combination of various Big Data tools, like Apache Hadoop, Apache Spark, Apache

Flume, Apache Impala, Apache Kudu and Apache HBase, needed to provide a

comprehensive system to build a Big Data Lake. In 2019, Cloudera acquired its

competitor, Hortonworks, and combined CDH with Hortonworks Data Platform (HDP) into

a single platform: Cloudera Data Platform (CDP).

Figure 1 Cloudera Data Platform

Instead of deprecating HDP, Cloudera took the best tools from both CDH and HDP and

updated them into a single platform. The result was a microservices-oriented, cloud-

native data lake platform with advanced analytics, centralized management, and built-in

security and governance.

Cloudera is available on-prem as CDP Private Cloud or as CDP Public Cloud.

4 CHALLENGES WITH HADOOP ARCHITECTURE

Combining compute and storage into a single node is one of the key aspects of Hadoop

architecture. This was meant to address all performance and management issues with

distributed systems for handling large datasets. However, limitations soon became very

apparent.

To scale storage, one must scale compute too. Reverse is also true. This has implications

with respect to software licenses as each additional node must be licensed.

In a traditional architecture with centralized storage, there are dedicated storage

controllers to take care of data tasks, like encryption, deduplication, compression, etc.

These controllers not only offload these functions from the CPU but also are purpose-

built for such data tasks. General-purpose CPUs are not efficient in handling such tasks.

Further, when a CPU core is tasked with handling storage functions, there is one less

core available to handle Big Data functions. This reduces the overall performance of the

system.

Finally, the architecture is designed to run the compute workload on the same node as

where the data is located (data localization). This leads to reduction in capacity utilization

as storage cannot be pooled.

5 COMPOSABLE INFRASTRUCTURE

The rise of Hadoop and other distributed applications led to a shift from traditional three-

tier infrastructure (where compute and storage were segregated and were connected via

network and/or SAN switches) to hyperconverged infrastructure (where the storage is

locally attached to the compute).

Hyperconverged infrastructure (HCI) followed a Hadoop-like principle by bringing

compute and storage on the same HCI node and ensuring fault-tolerance through having

multiple replicas of data. It aimed to solve problems IT departments were facing: “Flash

storage performance was much lower than its theoretical limits''. By attaching flash

storage directly with the compute through a PCIe bus, HCI aimed to provide IOPS and

latency close to theoretical limits.

However, HCI faced the same challenge as mentioned above:

● Unable to scale compute and storage independently

● Lower compute performance due to storage overhead

● Reduced capacity utilization

Composable Infrastructure resolves the above challenges by offloading the storage

services from CPU to a dedicated storage controller called a Data Processing Unit or DPU.

In Composable Infrastructure, storage services can now be offloaded from CPUs to DPUs,

leading to increased compute and storage performance. DPUs can provide storage

services, such as compression, deduplication, and erasure coding, in-line and at-line rate.

This creates a highly scalable, low-latency disaggregated storage that can scale

independently of compute and has full separation between control plane and data plane.

6 FUNGIBLE, INC.

Fungible was founded in 2015 with a vision of providing “solutions that will enable

highly performant, efficient, reliable and secure data centers to be built at any scale.” In

2016, Fungible developed its first Data Processing Unit (DPU), which forms the core of

Fungible’s dynamically composable infrastructure offerings.

6.1 Fungible DPUⓇ

The Fungible DPU is the so-called “third socket”, with CPU and GPU being the first two.

The CPU is the general-purpose processor handling all types of tasks, while the GPU is a

specialised processor handling vector floating point operations, typically graphical or

AI/ML workloads.

The Fungible DPU is a system-on-a-chip (SOC) combining a general purpose multi-

threaded processor with Ethernet and PCIe interfaces. It runs a custom operating system,

FungibleOS, designed for data-centric tasks. The DPU is highly-programmable with the

ability to make changes to protocols quickly and without performance degradation.

The DPU can be deployed either inside an application server, where the DPU acts as an

endpoint device, or inside a storage server, where it replaces the CPU. In an application

server, the Fungible DPU mediates between the CPU and network, offloading data-centric

computations from the CPU. In a storage server, the Fungible DPU implements the target-

side functionality of a storage system. Thus, the Fungible DPU efficiently disaggregates

both compute and storage resources.

Figure 2 Three Sockets (Source: The Fungible DPU: New Category of Microprocessor)

6.2 Fungible Architecture

Figure 3 Typical FDC rack

The Fungible Solution represents a data center-scale implementation of Fungible’s vision.

It is an on-prem, turn-key offering that consists of racks of disaggregated application and

storage servers. The entire FDC is managed by Fungible Composer software.

The key components of the solution are:

● Two or more high-performance, scale-out NVMe-oF Fungible FS1600 nodes

● Diskless Application servers with x86 CPU and one Fungible Accelerator Card

● Three dedicated management nodes that host the Fungible Composer Software

● Top-of-Rack (ToR) switches for data and management networks and routers from

Juniper

Fungible Solution is available in five storage configurations and four compute

configurations. Users can choose any one of the 20 compute and storage combinations

that meet their needs.

Table 1 Fungible T-shirt Sizes

 Compute.Tiny Compute.Medium Compute.Large Compute.XLarge

Storage.Tiny

(2) FS1600, 92TB
(4) Compute Nodes,
2*8x3.1Ghz, 256GB
RAM
Composer nodes

(2) FS1600, 92TB
(8) Compute Nodes,
2*8x3.1Ghz, 512GB
RAM
Composer nodes

(2) FS1600, 92TB
(32) Compute Nodes,
2*12x2.1Ghz, 512GB
RAM
Composer nodes

(2) FS1600, 92TB
(32) Compute Nodes,
2*20x2.1Ghz, 1.5TB
RAM
Composer nodes

Storage.Small

(2) FS1600, 92TB (4)
Compute Nodes,
2*8x3.1Ghz, 256GB
RAM
Composer nodes

(2) FS1600, 92TB
(8) Compute Nodes,
2*8x3.1Ghz, 512GB
RAM
Composer nodes

(2) FS1600, 92TB
(32) Compute Nodes,
2*12x2.1Ghz, 512GB
RAM
Composer nodes

(2) FS1600, 92TB
(32) Compute Nodes,
2*20x2.1Ghz, 1.5TB
RAM
Composer nodes

Storage.Medium

(3) FS1600, 138TB
(4) Compute Nodes,
2*8x3.1Ghz, 256GB
RAM
Composer nodes

(3) FS1600, 138TB
(8) Compute Nodes,
2*8x3.1Ghz, 512GB
RAM
Composer nodes

(3) FS1600, 138TB
(32) Compute Nodes,
2*12x2.1Ghz, 512GB
RAM
Composer nodes

(3) FS1600, 138TB
(32) Compute Nodes,
2*20x2.1Ghz, 1.5TB
RAM
Composer nodes

Storage.Large.Perf

(7) FS1600, 323TB
(4) Compute Nodes,
2*8x3.1Ghz, 256GB
RAM
Composer nodes

(7) FS1600, 323TB
(8) Compute Nodes,
2*8x3.1Ghz, 512GB
RAM
Composer nodes

(7) FS1600, 323TB
(32) Compute Nodes,
2*12x2.1Ghz, 512GB
RAM
Composer nodes

(7) FS1600, 323TB
(32) Compute Nodes,
2*20x2.1Ghz, 1.5TB
RAM
Composer nodes

Storage.Large.Density

(7) FS1600, 1290TB
(4) Compute Nodes,
2*8x3.1Ghz, 256GB
RAM
Composer nodes

(7) FS1600, 1290TB
(8) Compute Nodes,
2*8x3.1Ghz, 512GB
RAM
Composer nodes

(7) FS1600, 1290TB
(32) Compute Nodes,
2*12x2.1Ghz, 512GB
RAM
Composer nodes

(7) FS1600, 1290TB
(32) Compute Nodes,
2*20x2.1Ghz, 1.5TB
RAM
Composer nodes

7 ADDRESSING THE BIG DATA CHALLENGES

The Fungible solution is DPU powered and resolves the issues present in Hadoop

architecture.

First, it disaggregates the compute and storage into separate application and storage

nodes. This means increasing storage capacity has no impact on software licensing. This

is evident from the FDC T-shirt sizes as shown in table above.

The DPU is built from the ground up to handle storage functions. Both the data path and

the control plane of the DPU are fully programmable using high-level programming

languages. By combining data-centric accelerators with processor cores, Fungible DPUs

can provide exceptional performance without relying on CPUs. The CPUs can exclusively

handle Big Data workloads. Thus, Fungible can provide near-theoretical performance on

NVMe storage.

As data is not localised, but available over networking fabric, multiple storage capacities

can be pooled together into fewer nodes leading to higher capacity utilization.

8 BENCHMARKS

8.1 Test Bed Configuration

The Hadoop cluster was deployed on the Fungible Solution. Below is the detailed

configuration:

● Nodes – CPU – 16 cores – RAM – 128 GB

● Storage – 4 *1000GB, 4*500GB, 4*100GB volumes

● Network – 2*50Gbps network connectivity between nodes.

● Operating System - Ubuntu 20.4

● Hadoop - Cloudera-7.1.7, Hadoop- 3.2

8.2 Cloudera Components Distribution

Figure 4 Cloudera Component Distribution

8.3 Hadoop Benchmark

To benchmark the Fungible, we ran the TeraSort benchmark, which gives testers an
estimate of Hadoop storage and MapReduce performance.

TeraSort benchmark run is a three-step process:

1. Generating the input data via TeraGen.
2. Running the actual TeraSort on the input data.

3. Validating the sorted output data via TeraValidate.

8.3.1 HOW TO RUN TERAGEN, TERASORT AND TERAVALIDATE

Before performing the performance test, you should review the folder

hadoop_examples.jar

Running TeraGen

Run this command:

hadoop jar hadoop_examples.jar TerraGen 100000000 /benchmarks/terasort-

input // 10GB

This creates a 500GB file in the HDFS under the /benchmarks/terasort-input folder. It

enables the TeraSort to run its benchmark.

Running TeraSort

Run this command:

hadoop jar hadoop_examples.jar terasort /benchmarks/terasort-input

/benchmarks/terasort-output

This command runs a benchmarking MapReduce job on the data created by TeraGen in

the /benchmarks/terasort-input folder. The output result of the reduction is written into

files and placed under the /benchmarks/terasort-output/ folder, where TeraValidate will

check later.

Running TeraValidate

Run this command:

hadoop jar hadoop_examples.jar teravalidate /benchmarks/terasort-output

/benchmarks/terasort-validate

This command just ensures if the output of TeraSort was valid and without error.

Hadoop Configuration

SN Configuration item Final tuning

1 dfs.namenode.handler.count 160

2 fs.trash.interval default

3 io.file.buffer.size default

4 yarn.nodemanager.resource.memory-mb (All nodes: 50*5) 250GB

5 yarn.nodemanager.resource.cpu-vcores(Average) 50

6 yarn_scheduler_minimum_allocation_mb 1GB

7 yarn.scheduler.maximum-allocation-mb 32GB

8 mapreduce.map.memory.mb 2GB

9 mapreduce.reduce.memory.mb 4GB

10 mapreduce.map.java.opts defaults

11 mapreduce.reduce.java.opts defaults

12 mapred_compress_map_output TRUE

13 mapred_map_output_compression_codec snappy

14 mapred_reduce_parallel_copies 32

15 mapreduce.task.io.sort.mb 512

16 mapreduce.map.sort.spill.percent 0.8

17 mapreduce.task.io.sort.factor 64

8.3.2 RESULTS

Benchmark was run with RF2 and RF3 configuration with 100 GB data in both cases.

Table 2 RF3 Benchmark Results

 Data Size RF Jobs Time

TeraGen 100GB 3 100 156 sec

TeraSort 100GB 3 100 743 sec

TeraValidate 100GB 3 100 84 sec

Table 3 RF2 Benchmark Results

 Data Size RF Jobs Time

TeraGen 100GB 2 100 153 sec

TeraSort 100GB 2 100 744 sec

TeraValidate 100GB 2 100 77 sec

Figure 5 Benchmark Comparison

9 FINAL THOUGHTS

Hadoop operators have always faced a trade-off with respect to performance and

resiliency. The distributed architecture of Hadoop meant there was no inherent data

protection mechanism like RAID. Instead, data protection was enabled by storing multiple

copies of data. With RF 2, two copies of data are maintained (akin to RAID 1). With RF3,

three copies of data are maintained. While RF3 gave better resiliency, the overheads

associated with it led to lower performance and higher cost of the Hadoop cluster. As a

result, Hadoop operators reserved RF3 for extremely critical production data.

With the Fungible Solution powered by the Fungible DPU, Hadoop operators do not have

to make such trade-offs. As evident from the benchmark results, having an additional

copy of data in the Hadoop cluster did not have any noticeable effect on cluster

performance.

Overall, considering other benefits of Fungible Data Center (like, storage offload, better

resource pooling, etc), it is the right platform for any Hadoop workload.

10 AUTHORS

Gaganjit Singh Wazir, CEO at Translab Technologies

Neeraj G Dhopte, CTO at Translab Technologies

Shirshendu Bikash Mandal, VP, Technology Solutions at Translab Technologies

Anuj Kumar Jain, Technology Specialist at Translab Technologies

11 ABOUT TRANSLAB

Translab Technologies enables Digital Transformation for enterprises worldwide by

providing seamless customer experience, business agility and actionable insights.

Utilizing disruptive technologies, like Big Data, Analytics, the Internet of Things,

Automation, Mobility and Cloud, we offer solutions that have applications across industry

sectors. Translab Technologies is headquartered in Bengaluru and provides support to

its customers worldwide. Translab has designed solutions for data-warehousing and

Bigdata analytics for customers in BFSI, Insurance & healthcare to provide business

insights on large volumes of data that yield results for various use cases. Some of the

key use cases are Customer360, Sentimental Behaviour Analytics, and Descriptive

Analytics etc. Translab Technologies has been Oracle Gold Partner with deep expertise in

Engineered systems, Private Cloud Appliance, databases, and Analytics Tools. Translab

has also partnered with Cloudera to address big data challenges and has deep expertise

in designing and deploying Big Data clusters using Cloudera technology.

